{ "id": "math/0611925", "version": "v1", "published": "2006-11-29T17:58:09.000Z", "updated": "2006-11-29T17:58:09.000Z", "title": "A counterexample to the maximality of toric varieties", "authors": [ "Valerie Hower" ], "comment": "3 pages", "categories": [ "math.AG" ], "abstract": "We present a counterexample to the conjecture of Bihan, Franz, McCrory, and van Hamel concerning the maximality of toric varieties. There exists a six dimensional projective toric variety X with the sum of the mod 2 Betti numbers of X(R) strictly less than the sum of the mod 2 Betti numbers of X(C).", "revisions": [ { "version": "v1", "updated": "2006-11-29T17:58:09.000Z" } ], "analyses": { "subjects": [ "14M25", "05B35" ], "keywords": [ "counterexample", "maximality", "betti numbers", "dimensional projective toric variety", "van hamel concerning" ], "note": { "typesetting": "TeX", "pages": 3, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....11925H" } } }