{ "id": "math/0611911", "version": "v2", "published": "2006-11-29T11:38:02.000Z", "updated": "2008-04-13T15:56:54.000Z", "title": "Dimension and waiting time in rapidly mixing systems", "authors": [ "S. Galatolo" ], "comment": "Revised version, very similar to the one is published", "journal": "Math. Res. Lett. (2007)", "categories": [ "math.DS" ], "abstract": "We prove that if a system has superpolynomial (faster than any power law) decay of correlations then the time $\\tau_{r}(x,x_{0})$ needed for a typical point $x$ to enter for the first time a ball $B(x_{0},r)$ centered in $x_{0},$ with small radius $r$ scales as the local dimension at $x_{0},$ i.e. $$\\underset{r\\to 0}{\\lim}\\frac{\\log \\tau_{r}(x,x_{0})}{-\\log r}=d_{\\mu }(x_{0}).$$", "revisions": [ { "version": "v2", "updated": "2008-04-13T15:56:54.000Z" } ], "analyses": { "subjects": [ "37A25", "37C45" ], "keywords": [ "rapidly mixing systems", "waiting time", "local dimension", "small radius", "first time" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....11911G" } } }