{ "id": "math/0611860", "version": "v1", "published": "2006-11-28T12:38:39.000Z", "updated": "2006-11-28T12:38:39.000Z", "title": "How do random Fibonacci sequences grow?", "authors": [ "Elise Janvresse", "BenoƮt Rittaud", "Thierry De La Rue" ], "journal": "Probability Theory and Related Fields Volume 142, 3-4 (2008) 619-648", "doi": "10.1007/s00440-007-0117-7", "categories": [ "math.PR" ], "abstract": "We study two kinds of random Fibonacci sequences defined by $F_1=F_2=1$ and for $n\\ge 1$, $F_{n+2} = F_{n+1} \\pm F_{n}$ (linear case) or $F_{n+2} = |F_{n+1} \\pm F_{n}|$ (non-linear case), where each sign is independent and either + with probability $p$ or - with probability $1-p$ ($0