{ "id": "math/0611803", "version": "v1", "published": "2006-11-27T01:43:00.000Z", "updated": "2006-11-27T01:43:00.000Z", "title": "Homology of dihedral quandles", "authors": [ "Maciej Niebrzydowski", "Jozef H. Przytycki" ], "comment": "21 pages", "categories": [ "math.GT" ], "abstract": "We solve the conjecture by R. Fenn, C. Rourke and B. Sanderson that the rack homology of dihedral quandles satisfies H_3^R(R_p) = Z \\oplus Z_p for p odd prime. We also show that H_n^R(R_p) contains Z_p for n>2. Furthermore, we show that the torsion of H_n^R(R_3) is annihilated by 3. We also prove that the quandle homology H_4^Q(R_p) contains Z_p for p odd prime. We conjecture that for n>1 quandle homology satisfies: H_n^Q(R_p) = Z_p^{f_n}, where f_n are \"delayed\" Fibonacci numbers, that is, f_n = f_{n-1} + f_{n-3} and f(1)=f(2)=0, f(3)=1. Our paper is the first step in approaching this conjecture.", "revisions": [ { "version": "v1", "updated": "2006-11-27T01:43:00.000Z" } ], "analyses": { "subjects": [ "55N35", "57M25" ], "keywords": [ "odd prime", "conjecture", "quandle homology satisfies", "dihedral quandles satisfies", "first step" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....11803N" } } }