{ "id": "math/0611771", "version": "v3", "published": "2006-11-24T23:56:47.000Z", "updated": "2011-08-15T20:42:40.000Z", "title": "Geometric Invariant Theory and Einstein-Weyl Geometry", "authors": [ "Mustafa Kalafat" ], "comment": "A section on efficiency and classification is added", "journal": "Expo. Math. 29, No. 2, 220-230 (2011)", "categories": [ "math.AG", "math.DG" ], "abstract": "In this article, we give a survey of Geometric Invariant Theory for Toric Varieties, and present an application to the Einstein-Weyl Geometry. We compute the image of the Minitwistor space of the Honda metrics as a categorical quotient according to the most efficient linearization. The result is the complex weighted projective space CP_(1,1,2). We also find and classify all possible quotients.", "revisions": [ { "version": "v3", "updated": "2011-08-15T20:42:40.000Z" } ], "analyses": { "subjects": [ "14M25", "14L24", "53C28" ], "keywords": [ "geometric invariant theory", "einstein-weyl geometry", "complex weighted projective space", "minitwistor space", "honda metrics" ], "tags": [ "journal article" ], "publication": { "doi": "10.1016/j.exmath.2011.01.002" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....11771K", "inspire": 1382874 } } }