{ "id": "math/0611713", "version": "v2", "published": "2006-11-23T01:10:24.000Z", "updated": "2020-03-17T05:45:47.000Z", "title": "Culler-Shalen seminorms of fillings of the Whitehead link exterior", "authors": [ "Gabriel Indurskis" ], "comment": "34 pages, 3 figures", "categories": [ "math.GT" ], "abstract": "We determine the total Culler-Shalen seminorms for the 3-manifolds W_{p/q}:=W(p/q,-) obtained by Dehn filling with slope p/q on one boundary component of the Whitehead link exterior W when p is odd. As part of the proof, we use an explicit parametrization of the eigenvalue variety of W to find a one-variable polynomial whose roots characterize characters of p-reps of \\pi_{1}(W_{p/q}), i.e. representations with values in SL_2(C) which are parabolic on the peripheral subgroup.", "revisions": [ { "version": "v1", "updated": "2006-11-23T01:10:24.000Z", "comment": "49 pages, 3 figures", "journal": null, "doi": null }, { "version": "v2", "updated": "2020-03-17T05:45:47.000Z" } ], "analyses": { "subjects": [ "57M27", "20C15", "57N10", "57R65" ], "keywords": [ "whitehead link exterior", "total culler-shalen seminorms", "slope p/q", "boundary component", "explicit parametrization" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....11713I" } } }