{ "id": "math/0611626", "version": "v1", "published": "2006-11-21T02:06:33.000Z", "updated": "2006-11-21T02:06:33.000Z", "title": "Counting Links in Complete Graphs", "authors": [ "Tom Fleming", "Blake Mellor" ], "comment": "21 pages, several figures", "journal": "Osaka J. Math., vol. 46, 2009, pp. 1-29", "categories": [ "math.CO", "math.GT" ], "abstract": "We find the minimal number of links in an embedding of any complete $k$-partite graph on 7 vertices (including $K_7$, which has at least 21 links). We give either exact values or upper and lower bounds for the minimal number of links for all complete $k$-partite graphs on 8 vertices. We also look at larger complete bipartite graphs, and state a conjecture relating minimal linking embeddings with minimal book embeddings.", "revisions": [ { "version": "v1", "updated": "2006-11-21T02:06:33.000Z" } ], "analyses": { "subjects": [ "05C10", "57M15" ], "keywords": [ "complete graphs", "counting links", "larger complete bipartite graphs", "minimal number", "minimal book embeddings" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....11626F" } } }