{ "id": "math/0611622", "version": "v1", "published": "2006-11-20T22:58:02.000Z", "updated": "2006-11-20T22:58:02.000Z", "title": "About the fractional parts of the powers of the rational numbers", "authors": [ "Bakir Farhi" ], "comment": "5 pages", "categories": [ "math.NT" ], "abstract": "Let $p/q$ ($p, q \\in \\mathbb{N}^*$) be a positive rational number such that $p > q^2$. We show that for any $\\epsilon > 0$, there exists a set $A(\\epsilon) \\subset [0, 1[$, with finite border and with Lebesgue measure $< \\epsilon$, for which the set of positive real numbers $\\lambda$ satisfying $<\\lambda (p / q)^n> \\in A(\\epsilon)$ $(\\forall n \\in \\mathbb{N})$ is uncountable.", "revisions": [ { "version": "v1", "updated": "2006-11-20T22:58:02.000Z" } ], "analyses": { "subjects": [ "11K06" ], "keywords": [ "fractional parts", "positive real numbers", "positive rational number", "finite border" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....11622F" } } }