{ "id": "math/0611619", "version": "v1", "published": "2006-11-20T20:59:18.000Z", "updated": "2006-11-20T20:59:18.000Z", "title": "Semidirect Products and Functional Equations for Quantum Multiplication", "authors": [ "Melvyn B. Nathanson" ], "comment": "7 pages", "categories": [ "math.NT", "math.QA" ], "abstract": "The quantum integer [n]_q is the polynomial 1 + q + q^2 + ... + q^{n-1}, and the sequence of polynomials { [n]_q }_{n=1}^{\\infty} is a solution of the functional equation f_{mn}(q) = f_m(q)f_n(q^m). In this paper, semidirect products of semigroups are used to produce families of functional equations that generalize the functional equation for quantum multiplication.", "revisions": [ { "version": "v1", "updated": "2006-11-20T20:59:18.000Z" } ], "analyses": { "subjects": [ "39B05", "11T22", "30B10", "81R50", "11B13" ], "keywords": [ "functional equation", "quantum multiplication", "semidirect products", "polynomial" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....11619N" } } }