{ "id": "math/0611565", "version": "v1", "published": "2006-11-19T06:26:04.000Z", "updated": "2006-11-19T06:26:04.000Z", "title": "On the Estimates of the Density of Feynman-Kac Semigroups of $α$-Stable-like Processes", "authors": [ "Chunlin Wang" ], "comment": "27 pages", "categories": [ "math.PR" ], "abstract": "Suppose that $\\alpha \\in (0,2)$ and that $X$ is an $\\alpha$-stable-like process on $\\R^d$. Let $F$ be a function on $\\R^d$ belonging to the class $\\bf{J_{d,\\alpha}}$ (see Introduction) and $A_{t}^{F}$ be $\\sum_{s \\le t}F(X_{s-},X_{s}), t> 0$, a discontinuous additive functional of $X$. With neither $F$ nor $X$ being symmetric, under certain conditions, we show that the Feynman-Kac semigroup $\\{S_{t}^{F}:t \\ge 0\\}$ defined by $$ S_{t}^{F}f(x)=\\mathbb{E}_{x}(e^{-A_{t}^{F}}f(X_{t}))$$ has a density $q$ and that there exist positive constants $C_1,C_2,C_3$ and $C_4$ such that $$C_{1}e^{-C_{2}t}t^{-\\frac{d}{\\alpha}}(1 \\wedge \\frac{t^{\\frac{1}{\\alpha}}}{|x-y|})^{d+\\alpha} \\leq q(t,x,y) \\leq C_{3}e^{C_{4}t}t^{-\\frac{d}{\\alpha}}(1 \\wedge \\frac{t^{\\frac{1}{\\alpha}}}{|x-y|})^{d+\\alpha}$$ for all $(t,x,y)\\in (0,\\infty) \\times \\R^d \\times \\R^d$.", "revisions": [ { "version": "v1", "updated": "2006-11-19T06:26:04.000Z" } ], "analyses": { "subjects": [ "60J45", "60J35", "60J55", "60J75", "60G51", "60G52" ], "keywords": [ "feynman-kac semigroup", "stable-like processes", "introduction", "discontinuous additive functional", "conditions" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....11565W" } } }