{ "id": "math/0611506", "version": "v2", "published": "2006-11-16T16:28:41.000Z", "updated": "2009-06-08T13:27:34.000Z", "title": "Many parameter Hoelder perturbation of unbounded operators", "authors": [ "Andreas Kriegl", "Peter W. Michor", "Armin Rainer" ], "comment": "LaTeX, 4 pages; The result is generalized from Lipschitz to Hoelder. Title changed", "journal": "Math. Ann. 353, 2 (2012), 519-522", "doi": "10.1007/s00208-011-0693-9", "categories": [ "math.FA", "math.SP" ], "abstract": "If $u\\mapsto A(u)$ is a $C^{0,\\alpha}$-mapping, for $0< \\alpha \\le 1$, having as values unbounded self-adjoint operators with compact resolvents and common domain of definition, parametrized by $u$ in an (even infinite dimensional) space, then any continuous (in $u$) arrangement of the eigenvalues of $A(u)$ is indeed $C^{0,\\alpha}$ in $u$.", "revisions": [ { "version": "v2", "updated": "2009-06-08T13:27:34.000Z" } ], "analyses": { "subjects": [ "47A55", "47A56", "47B25" ], "keywords": [ "parameter hoelder perturbation", "unbounded operators", "values unbounded self-adjoint operators", "infinite dimensional", "compact resolvents" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....11506K" } } }