{ "id": "math/0611403", "version": "v3", "published": "2006-11-13T20:45:00.000Z", "updated": "2007-01-19T21:56:11.000Z", "title": "The generating hypothesis for the stable module category of a $p$-group", "authors": [ "David J. Benson", "Sunil K. Chebolu", "J. Daniel Christensen", "Jan Minac" ], "comment": "6 pages, fixed minor typos, to appear in J. Algebra", "journal": "Journal of Algebra 310 (2007) 428-433", "categories": [ "math.RT", "math.AT" ], "abstract": "Freyd's generating hypothesis, interpreted in the stable module category of a finite p-group G, is the statement that a map between finite-dimensional kG-modules factors through a projective if the induced map on Tate cohomology is trivial. We show that Freyd's generating hypothesis holds for a non-trivial finite p-group G if and only if G is either C_2 or C_3. We also give various conditions which are equivalent to the generating hypothesis.", "revisions": [ { "version": "v3", "updated": "2007-01-19T21:56:11.000Z" } ], "analyses": { "subjects": [ "20C20", "20J06", "55P42" ], "keywords": [ "stable module category", "non-trivial finite p-group", "finite-dimensional kg-modules factors", "freyds generating hypothesis holds" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....11403B" } } }