{ "id": "math/0611394", "version": "v2", "published": "2006-11-13T16:41:59.000Z", "updated": "2010-10-20T18:09:23.000Z", "title": "Energy-critical NLS with quadratic potentials", "authors": [ "Rowan Killip", "Monica Visan", "Xiaoyi Zhang" ], "comment": "Incorporates corrections to Lemma 6.5", "journal": "Comm. PDE. 34 (2009), 1531--1565", "categories": [ "math.AP" ], "abstract": "We consider the defocusing $\\dot H^1$-critical nonlinear Schr\\\"odinger equation in all dimensions ($n\\geq 3$) with a quadratic potential $V(x)=\\pm \\tfrac12 |x|^2$. We show global well-posedness for radial initial data obeying $\\nabla u_0(x), xu_0(x) \\in L^2$. In view of the potential $V$, this is the natural energy space. In the repulsive case, we also prove scattering. We follow the approach pioneered by Bourgain and Tao in the case of no potential; indeed, we include a proof of their results that incorporates a couple of simplifications discovered while treating the problem with quadratic potential.", "revisions": [ { "version": "v2", "updated": "2010-10-20T18:09:23.000Z" } ], "analyses": { "keywords": [ "quadratic potential", "energy-critical nls", "natural energy space", "radial initial data obeying", "global well-posedness" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....11394K" } } }