{ "id": "math/0611371", "version": "v1", "published": "2006-11-13T07:58:09.000Z", "updated": "2006-11-13T07:58:09.000Z", "title": "Riemannian curvature: variations on different notions of positivity", "authors": [ "Mohammed Larbi Labbi" ], "comment": "In french, extracted from habilitation thesis at Montpellier II University (France), 50 pages", "journal": "Habilitation thesis, July 2006, Montpellier II University, France", "categories": [ "math.DG", "math-ph", "math.MP" ], "abstract": "We study different notions of Riemannian curvatures: The $p$-curvatures which interpolate between the scalar curvature and the sectional curvature, the Gauss-Bonnet-Weyl curvatures form another interpolation from the scalar curvature to the Gauss-Bonnet integrand. We bring out the $(p,q)$-curvatures, which incorporate all the previous curvatures. We then examine the curvature term which appears in the classical Weitzenb\\\"ock formula. We also study the positivity properties of the $p$-curvatures, the second Gauss-Bonnet-Weyl curvature, the Einstein curvature and the isotropic curvature.", "revisions": [ { "version": "v1", "updated": "2006-11-13T07:58:09.000Z" } ], "analyses": { "subjects": [ "53C21", "53C25", "53B20", "58A14", "58D17", "58E11" ], "keywords": [ "riemannian curvature", "variations", "scalar curvature", "gauss-bonnet-weyl curvatures form", "second gauss-bonnet-weyl curvature" ], "tags": [ "dissertation", "journal article" ], "note": { "typesetting": "TeX", "pages": 50, "language": "fr", "license": "arXiv", "status": "editable", "adsabs": "2006math.....11371L" } } }