{ "id": "math/0611297", "version": "v4", "published": "2006-11-09T23:26:00.000Z", "updated": "2009-03-10T20:07:42.000Z", "title": "Dynamics of Rational Surface Automorphisms: Linear Fractional Recurrences", "authors": [ "Eric Bedford", "Kyounghee Kim" ], "comment": "24 pages, 7 figures, A companion Mathematica notebook is available at: http://www.math.fsu.edu/~kim/", "categories": [ "math.DS" ], "abstract": "We consider the family $f_{a,b}(x,y)=(y,(y+a)/(x+b))$ of birational maps of the plane and the parameter values $(a,b)$ for which $f_{a,b}$ gives an automorphism of a rational surface. In particular, we find values for which $f_{a,b}$ is an automorphism of positive entropy but no invariant curve. The Main Theorem: If $f_{a,b}$ is an automorphism with an invariant curve and positive entropy, then either (1) $(a,b)$ is real, and the restriction of $f$ to the real points has maximal entropy, or (2) $f_{a,b}$ has a rotation (Siegel) domain.", "revisions": [ { "version": "v4", "updated": "2009-03-10T20:07:42.000Z" } ], "analyses": { "subjects": [ "37F99", "32M99", "32H50" ], "keywords": [ "linear fractional recurrences", "rational surface automorphisms", "invariant curve", "positive entropy", "main theorem" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....11297B" } } }