{ "id": "math/0611211", "version": "v1", "published": "2006-11-08T03:32:00.000Z", "updated": "2006-11-08T03:32:00.000Z", "title": "On The Chaotic Asymptotics of Ramanujan's Entire Function $A_q(z)$", "authors": [ "Ruiming Zhang" ], "comment": "12 pages", "categories": [ "math.CA", "math.CV" ], "abstract": "We will use a discrete analogue of the classical \\emph{Laplace} method to show that for infinitely many positive integers $n$, the main term of the asymptotic expansions of scaled confluent basic hypergeometric functions, including the Ramanujan's entire function $A_{q}(z)$, could be expressed in $\\theta$-functions, and the error term depends on the ergodic property of certain real scaling parameter.", "revisions": [ { "version": "v1", "updated": "2006-11-08T03:32:00.000Z" } ], "analyses": { "subjects": [ "33D45", "33E05" ], "keywords": [ "ramanujans entire function", "chaotic asymptotics", "scaled confluent basic hypergeometric functions", "error term depends", "asymptotic expansions" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....11211Z" } } }