{ "id": "math/0611173", "version": "v3", "published": "2006-11-07T09:46:45.000Z", "updated": "2007-09-28T09:23:00.000Z", "title": "Full groups, flip conjugacy, and orbit equivalence of Cantor minimal systems", "authors": [ "Sergey Bezuglyi", "Konstantin Medynets" ], "comment": "17 pages, references added, some typos fixed", "categories": [ "math.DS", "math.GR" ], "abstract": "In the paper, we consider the full group $[\\phi]$ and topological full group $[[\\phi]]$ of a Cantor minimal system $(X,\\f)$. We prove that the commutator subgroups $D([\\f])$ and $D([[\\f]])$ are simple and show that the groups $D([\\f])$ and $D([[\\f]])$ completely determine the class of orbit equivalence and flip conjugacy of $\\f$, respectively. These results improve the classification found in \\cite{gps:1999}. As a corollary of the technique used, we establish the fact that $\\f$ can be written as a product of three involutions from $[\\f]$.", "revisions": [ { "version": "v3", "updated": "2007-09-28T09:23:00.000Z" } ], "analyses": { "subjects": [ "37B05", "20B99" ], "keywords": [ "cantor minimal system", "flip conjugacy", "orbit equivalence", "topological full group", "commutator subgroups" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....11173B" } } }