{ "id": "math/0611165", "version": "v4", "published": "2006-11-07T08:19:25.000Z", "updated": "2007-03-13T12:20:10.000Z", "title": "Existence theorem and blow-up criterion of strong solutions to the two-fluid MHD equation in ${\\mathbb R}^3$", "authors": [ "Qionglei Chen", "Changxing Miao" ], "comment": "18 pages", "journal": "J. Differential Equations 239 (2007)251-271", "doi": "10.1016/j.jde.2007.03.029", "categories": [ "math.AP" ], "abstract": "We first give the local well-posedness of strong solutions to the Cauchy problem of the 3D two-fluid MHD equations, then study the blow-up criterion of the strong solutions. By means of the Fourier frequency localization and Bony's paraproduct decomposition, it is proved that strong solution $(u,b)$ can be extended after $t=T$ if either $u\\in L^q_T(\\dot B^{0}_{p,\\infty})$ with $\\frac{2}{q}+\\frac{3}{p}\\le 1$ and $b\\in L^1_T(\\dot B^{0}_{\\infty,\\infty})$, or $(\\omega, J)\\in L^q_T(\\dot B^{0}_{p,\\infty})$ with $\\frac{2}{q}+\\frac{3}{p}\\le 2$, where $\\omega(t)=\\na\\times u $ denotes the vorticity of the velocity and $J=\\na\\times b$ the current density.", "revisions": [ { "version": "v4", "updated": "2007-03-13T12:20:10.000Z" } ], "analyses": { "subjects": [ "35B65", "76W05" ], "keywords": [ "strong solution", "blow-up criterion", "existence theorem", "3d two-fluid mhd equations", "fourier frequency localization" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }