{ "id": "math/0611135", "version": "v1", "published": "2006-11-06T12:04:35.000Z", "updated": "2006-11-06T12:04:35.000Z", "title": "On the Belyi degree of a number field", "authors": [ "Leonardo Zapponi" ], "categories": [ "math.NT", "math.AG" ], "abstract": "In this short note we introduce the Belyi degree of a number field K, which is the smallest degree of a dessin d'enfant having K as field of moduli. After the description of some general properties (for example, the fact that there exist finitely many number fields of bounded Belyi degree), we give a lower and an upper bound for such an invariant. We finally give some explicit examples for quadratic fields.", "revisions": [ { "version": "v1", "updated": "2006-11-06T12:04:35.000Z" } ], "analyses": { "keywords": [ "number field", "explicit examples", "short note", "upper bound", "smallest degree" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....11135Z" } } }