{ "id": "math/0611070", "version": "v1", "published": "2006-11-03T11:54:49.000Z", "updated": "2006-11-03T11:54:49.000Z", "title": "On existence of [a,b]-factors avoiding given subgraphs", "authors": [ "Yinghong Ma", "Qinglin Yu" ], "comment": "13 pages", "categories": [ "math.CO" ], "abstract": "For a graph $G = (V(G), E(G))$, let $i(G)$ be the number of isolated vertices in $G$. The {\\it isolated toughness} of $G$ is defined as $I(G) = min\\{|S|/i(G-S) : S\\subseteq V(G), i(G-S)\\geq 2\\}$ if $G$ is not complete; $I(G)=|V(G)|-1$ otherwise. In this paper, several sufficient conditions in terms of isolated toughness are obtained for the existence of $[a, b]$-factors avoiding given subgraphs, e.g., a set of vertices, a set of edges and a matching, respectively.", "revisions": [ { "version": "v1", "updated": "2006-11-03T11:54:49.000Z" } ], "analyses": { "subjects": [ "05C70" ], "keywords": [ "isolated toughness", "sufficient conditions", "isolated vertices" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....11070M" } } }