{ "id": "math/0611018", "version": "v1", "published": "2006-11-01T09:27:50.000Z", "updated": "2006-11-01T09:27:50.000Z", "title": "The number of conjugacy classes of elements of the Cremona group of some given finite order", "authors": [ "Jérémy Blanc" ], "comment": "14 pages", "journal": "Bull. Soc. Math. France 135 (2007), no. 3, 419-434", "categories": [ "math.AG" ], "abstract": "This note presents the study of the conjugacy classes of elements of some given finite order n in the Cremona group of the plane. In particular, it is shown that the number of conjugacy classes is infinite if n is even, n=3 or n=5, and that it is equal to 3 (respectively 9) if n=9 (respectively 15), and is exactly 1 for all remaining odd orders. Some precise representative elements of the classes are given.", "revisions": [ { "version": "v1", "updated": "2006-11-01T09:27:50.000Z" } ], "analyses": { "subjects": [ "14E07" ], "keywords": [ "conjugacy classes", "cremona group", "finite order", "remaining odd orders", "precise representative elements" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....11018B" } } }