{ "id": "math/0610977", "version": "v1", "published": "2006-10-31T17:39:23.000Z", "updated": "2006-10-31T17:39:23.000Z", "title": "New results related to a conjecture of Manickam and Singhi", "authors": [ "G. Chiaselotti", "G. Infante", "G. Marino" ], "doi": "10.1016/j.ejc.2007.03.002", "categories": [ "math.CO" ], "abstract": "In 1998 Manickam and Singhi conjectured that for every positive integer $d$ and every $n \\ge 4d$, every set of $n$ real numbers whose sum is nonnegative contains at least $\\binom {n-1}{d-1}$ subsets of size $d$ whose sums are nonnegative. In this paper we establish new results related to this conjecture. We also prove that the conjecture of Manickam and Singhi does not hold for $n=2d+2$.", "revisions": [ { "version": "v1", "updated": "2006-10-31T17:39:23.000Z" } ], "analyses": { "subjects": [ "05D05", "05A15" ], "keywords": [ "conjecture", "real numbers", "positive integer" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....10977C" } } }