{ "id": "math/0610962", "version": "v1", "published": "2006-10-31T09:36:18.000Z", "updated": "2006-10-31T09:36:18.000Z", "title": "Generating functions for Hecke operators", "authors": [ "Hala Hajj Shehadeh", "Samar Jaafar", "Kamal Khuri-Makdisi" ], "comment": "13 pages", "journal": "International Journal of Number Theory 5 (2009), no. 1, 125-140", "categories": [ "math.NT" ], "abstract": "Fix a prime N, and consider the action of the Hecke operator T_N on the space M_k(SL(2,Z)) of modular forms of full level and varying weight k. The coefficients of the matrix of T_N with respect to the basis {E_4^i E_6^j | 4i + 6j = k} for M_k(SL(2,Z)) can be combined for varying k into a generating function F_N. We show that this generating function is a rational function for all N, and present a systematic method for computing F_N. We carry out the computations for N = 2, 3, 5, and indicate and discuss generalizations to spaces of modular forms of arbitrary level.", "revisions": [ { "version": "v1", "updated": "2006-10-31T09:36:18.000Z" } ], "analyses": { "subjects": [ "11F32", "13D40", "11F11" ], "keywords": [ "generating function", "hecke operator", "modular forms", "arbitrary level", "systematic method" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....10962H" } } }