{ "id": "math/0610954", "version": "v2", "published": "2006-10-31T03:46:02.000Z", "updated": "2006-11-01T15:30:19.000Z", "title": "A sharper estimate on the Betti numbers of sets defined by quadratic inequalities", "authors": [ "Saugata Basu", "Michael Kettner" ], "comment": "12 pages, 1 figure, corrected typo", "journal": "Discrete Comput. Geom. 39:734-746, 2008", "categories": [ "math.AG", "math.AT" ], "abstract": "In this paper we consider the problem of bounding the Betti numbers, $b_i(S)$, of a semi-algebraic set $S \\subset \\R^k$ defined by polynomial inequalities $P_1 \\geq 0,...,P_s \\geq 0$, where $P_i \\in \\R[X_1,...,X_k]$ and $\\deg(P_i) \\leq 2$, for $1 \\leq i \\leq s$. We prove that for $0\\le i\\le k-1$, \\[ b_i(S) \\le{1/2}(\\sum_{j=0}^{min\\{s,k-i\\}}{{s}\\choose j}{{k+1}\\choose {j}}2^{j}). \\] In particular, for $2\\le s\\le \\frac{k}{2}$, we have \\[ b_i(S)\\le {1/2} 3^{s}{{k+1}\\choose {s}} \\leq {1/2} (\\frac{3e(k+1)}{s})^s. \\] This improves the bound of $k^{O(s)}$ proved by Barvinok. This improvement is made possible by a new approach, whereby we first bound the Betti numbers of non-singular complete intersections of complex projective varieties defined by generic quadratic forms, and use this bound to obtain bounds in the real semi-algebraic case.", "revisions": [ { "version": "v2", "updated": "2006-11-01T15:30:19.000Z" } ], "analyses": { "subjects": [ "14P10", "14P25" ], "keywords": [ "betti numbers", "quadratic inequalities", "sharper estimate", "non-singular complete intersections" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....10954B" } } }