{ "id": "math/0610703", "version": "v1", "published": "2006-10-23T22:45:08.000Z", "updated": "2006-10-23T22:45:08.000Z", "title": "An existence theorem for G-structure preserving affine immersions", "authors": [ "Paolo Piccione", "Daniel V. Tausk" ], "comment": "31 pages", "categories": [ "math.DG" ], "abstract": "We prove an existence result for local and global G-structure preserving affine immersions between affine manifolds. Several examples are discussed in the context of Riemannian and semi-Riemannian geometry, including the case of isometric immersions into Lie groups endowed with a left-invariant metric, and the case of isometric immersions into products of space forms.", "revisions": [ { "version": "v1", "updated": "2006-10-23T22:45:08.000Z" } ], "analyses": { "subjects": [ "53A15", "53B05", "53C10", "53C40" ], "keywords": [ "existence theorem", "isometric immersions", "global g-structure preserving affine immersions", "lie groups", "affine manifolds" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....10703P" } } }