{ "id": "math/0610694", "version": "v1", "published": "2006-10-23T18:32:53.000Z", "updated": "2006-10-23T18:32:53.000Z", "title": "On anticyclotomic mu-invariants of modular forms", "authors": [ "Robert Pollack", "Tom Weston" ], "doi": "10.1112/S0010437X11005318", "categories": [ "math.NT" ], "abstract": "Let f be a modular form of weight 2 and trivial character. Fix also an imaginary quadratic field K. We use work of Bertolini-Darmon and Vatsal to study the mu-invariant of the p-adic Selmer group of f over the anticyclotomic Zp-extension of K. In particular, we verify the mu-part of the main conjecture in this context. The proof of this result is based on an analysis of congruences of modular forms, leading to a conjectural quantitative version of level-lowering (which we verify in the case that Mazur's principle applies).", "revisions": [ { "version": "v1", "updated": "2006-10-23T18:32:53.000Z" } ], "analyses": { "subjects": [ "11R23", "11F33", "11G05" ], "keywords": [ "modular form", "anticyclotomic mu-invariants", "imaginary quadratic field", "p-adic selmer group", "mazurs principle applies" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....10694P" } } }