{ "id": "math/0610641", "version": "v1", "published": "2006-10-21T01:34:01.000Z", "updated": "2006-10-21T01:34:01.000Z", "title": "Persistence of Hyperbolic Tori in Generalized Hamiltonian Systems", "authors": [ "Zhenxin Liu", "Dalai Yihe", "Qingdao Huang" ], "comment": "LaTeX, 17 pages", "journal": "Northeast. Math. J. 21 (4) (2005), 447-464", "categories": [ "math.DS", "math-ph", "math.MP" ], "abstract": "In this paper we prove the persistence of hyperbolic invariant tori in generalized Hamiltonian systems, which may admit a distinct number of action and angle variables. The systems under consideration can be odd dimensional in tangent direction. Our results generalize the well-known results of Graff and Zehnder in standard Hamiltonians. In our case the unperturbed Hamiltonian systems may be degenerate. We also consider the persistence problem of hyperbolic tori on sub-manifolds.", "revisions": [ { "version": "v1", "updated": "2006-10-21T01:34:01.000Z" } ], "analyses": { "subjects": [ "37J40", "70H05", "70K60" ], "keywords": [ "generalized hamiltonian systems", "hyperbolic tori", "hyperbolic invariant tori", "angle variables", "persistence problem" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....10641L" } } }