{ "id": "math/0610624", "version": "v1", "published": "2006-10-20T15:16:27.000Z", "updated": "2006-10-20T15:16:27.000Z", "title": "Jacobi decomposition of weighted Triebel-Lizorkin and Besov spaces", "authors": [ "George Kyriazis", "Pencho Petrushev", "Yuan Xu" ], "comment": "34 pages", "categories": [ "math.CA" ], "abstract": "The Littlewood-Paley theory is extended to weighted spaces of distributions on $[-1,1]$ with Jacobi weights $ \\w(t)=(1-t)^\\alpha(1+t)^\\beta. $ Almost exponentially localized polynomial elements (needlets) $\\{\\phi_\\xi\\}$, $\\{\\psi_\\xi\\}$ are constructed and, in complete analogy with the classical case on $\\RR^n$, it is shown that weighted Triebel-Lizorkin and Besov spaces can be characterized by the size of the needlet coefficients $\\{\\ip{f,\\phi_\\xi}\\}$ in respective sequence spaces.", "revisions": [ { "version": "v1", "updated": "2006-10-20T15:16:27.000Z" } ], "analyses": { "subjects": [ "42A38", "42B08", "42B15" ], "keywords": [ "besov spaces", "weighted triebel-lizorkin", "jacobi decomposition", "respective sequence spaces", "littlewood-paley theory" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....10624K" } } }