{ "id": "math/0610509", "version": "v1", "published": "2006-10-17T08:53:24.000Z", "updated": "2006-10-17T08:53:24.000Z", "title": "An extension to the Wiener space of the arbitrary functions principle", "authors": [ "Nicolas Bouleau" ], "journal": "Comptes rendus de l'acad\\'{e}mie des sciences, Math\\'{e}matiques 343 (2006) 329-332", "categories": [ "math.PR" ], "abstract": "The arbitrary functions principle says that the fractional part of $nX$ converges stably to an independent random variable uniformly distributed on the unit interval, as soon as the random variable $X$ possesses a density or a characteristic function vanishing at infinity. We prove a similar property for random variables defined on the Wiener space when the stochastic measure $dB\\_s$ is crumpled on itself.", "revisions": [ { "version": "v1", "updated": "2006-10-17T08:53:24.000Z" } ], "analyses": { "subjects": [ "31C25", "60H07" ], "keywords": [ "wiener space", "random variable", "arbitrary functions principle says", "independent random", "fractional part" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....10509B" } } }