{ "id": "math/0610501", "version": "v6", "published": "2006-10-16T23:54:13.000Z", "updated": "2008-06-06T23:36:30.000Z", "title": "Intrinsic linking and knotting are arbitrarily complex", "authors": [ "Erica Flapan", "Blake Mellor", "Ramin Naimi" ], "comment": "18 pages, 5 figures. Proposition 2 has been strengthened, and Corollary 1 and Proposition 3 have been added to answer a question of Taniyama's", "journal": "Fund. Math., vol. 201, no. 2, 2008, pp. 131-148", "categories": [ "math.GT", "math.CO" ], "abstract": "We show that, given any $n$ and $\\alpha$, every embedding of any sufficiently large complete graph in $\\mathbb{R}^3$ contains an oriented link with components $Q_1$, ..., $Q_n$ such that for every $i\\not =j$, $|\\lk(Q_i,Q_j)|\\geq\\alpha$ and $|a_2(Q_i)|\\geq\\alpha$, where $a_{2}(Q_i)$ denotes the second coefficient of the Conway polynomial of $Q_i$.", "revisions": [ { "version": "v6", "updated": "2008-06-06T23:36:30.000Z" } ], "analyses": { "subjects": [ "57M25", "57M15", "05C10" ], "keywords": [ "arbitrarily complex", "intrinsic linking", "sufficiently large complete graph", "second coefficient", "conway polynomial" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....10501F" } } }