{ "id": "math/0610486", "version": "v1", "published": "2006-10-16T14:22:28.000Z", "updated": "2006-10-16T14:22:28.000Z", "title": "Dirichlet forms in simulation", "authors": [ "Nicolas Bouleau" ], "journal": "Monte Carlo Methods and Applications 11 (2005) n4, 385-396", "categories": [ "math.PR" ], "abstract": "Equipping the probability space with a local Dirichlet form with square field operator $\\Gamma$ and generator $A$ allows to improve Monte Carlo computations of expectations, densities, and conditional expectations, as soon as we are able to simulate a random variable $X$ together with $\\Gamma[X]$ and $A[X]$. We give examples on the Wiener space, on the Poisson space and on the Monte Carlo space. When $X$ is real-valued we give an explicit formula yielding the density at the speed of the law of large numbers.", "revisions": [ { "version": "v1", "updated": "2006-10-16T14:22:28.000Z" } ], "analyses": { "subjects": [ "31C25", "60H07", "65G99", "65C05", "65C20" ], "keywords": [ "simulation", "monte carlo space", "local dirichlet form", "square field operator", "monte carlo computations" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....10486B" } } }