{ "id": "math/0610463", "version": "v3", "published": "2006-10-15T22:42:02.000Z", "updated": "2008-06-17T05:44:52.000Z", "title": "What is the Jacobian of a Riemann surface with boundary?", "authors": [ "Thomas M. Fiore", "Igor Kriz" ], "comment": "27 pages. Minor explanation and motivation added.", "categories": [ "math.AG", "math-ph", "math.MP" ], "abstract": "We define the Jacobian of a Riemann surface with analytically parametrized boundary components. These Jacobians belong to a moduli space of ``open abelian varieties'' which satisfies gluing axioms similar to those of Riemann surfaces, and therefore allows a notion of ``conformal field theory'' to be defined on this space. We further prove that chiral conformal field theories corresponding to even lattices factor through this moduli space of open abelian varieties.", "revisions": [ { "version": "v3", "updated": "2008-06-17T05:44:52.000Z" } ], "analyses": { "subjects": [ "14H40", "81T40", "18C10", "32G15" ], "keywords": [ "riemann surface", "conformal field theory", "open abelian varieties", "moduli space", "chiral conformal field theories corresponding" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....10463F" } } }