{ "id": "math/0610360", "version": "v1", "published": "2006-10-11T09:59:05.000Z", "updated": "2006-10-11T09:59:05.000Z", "title": "The maximal order of a class of multiplicative arithmetical functions", "authors": [ "László Tóth", "Eduard Wirsing" ], "journal": "Annales Univ. Sci. Budapest., Sect. Comp., 22 (2003), 353-364", "categories": [ "math.NT" ], "abstract": "We prove simple theorems concerning the maximal order of a large class of multiplicative functions. As an application, we determine the maximal orders of certain functions of the type $\\sigma_A(n)= \\sum_{d\\in A(n)} d$, where A(n) is a subset of the set of all positive divisors of $n$, including the divisor-sum function $\\sigma(n)$ and its unitary and exponential analogues. We also give the minimal order of a new class of Euler-type functions, including the Euler-function $\\phi(n)$ and its unitary analogue.", "revisions": [ { "version": "v1", "updated": "2006-10-11T09:59:05.000Z" } ], "analyses": { "subjects": [ "11A25", "11N37" ], "keywords": [ "maximal order", "multiplicative arithmetical functions", "simple theorems", "euler-type functions", "minimal order" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....10360T" } } }