{ "id": "math/0610275", "version": "v1", "published": "2006-10-09T08:27:35.000Z", "updated": "2006-10-09T08:27:35.000Z", "title": "On exponentially coprime integers", "authors": [ "László Tóth" ], "journal": "Pure Math. Appl. (PU.M.A.), 15 (2004), 343-348", "categories": [ "math.NT" ], "abstract": "The integers $n=\\prod_{i=1}^r p_i^{a_i}$ and $m=\\prod_{i=1}^r p_i^{b_i}$ having the same prime factors are called exponentially coprime if $(a_i,b_i)=1$ for every $1\\le i\\le r$. We estimate the number of pairs of exponentially coprime integers $n,m\\le x$ having the prime factors $p_1,...,p_r$ and show that the asymptotic density of pairs of exponentially coprime integers having $r$ fixed prime divisors is $(\\zeta(2))^{-r}$.", "revisions": [ { "version": "v1", "updated": "2006-10-09T08:27:35.000Z" } ], "analyses": { "subjects": [ "11A05", "11A25", "11N37" ], "keywords": [ "exponentially coprime integers", "prime factors", "asymptotic density", "fixed prime divisors" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....10275T" } } }