{ "id": "math/0610228", "version": "v1", "published": "2006-10-06T15:43:00.000Z", "updated": "2006-10-06T15:43:00.000Z", "title": "On the Jacobian ring of a complete intersection", "authors": [ "Alan Adolphson", "Steven Sperber" ], "comment": "28 pages, no figures", "categories": [ "math.AG", "math.AC" ], "abstract": "Let f_1,...,f_r be homogeneous polynomials in K[x_1,...,x_n], K a field. Put F=y_1f_1+...+y_rf_r in K[x,y] and let I be the ideal of K[x,y] generated by the partials of F relative to the x_i and y_j. The Jacobian ring of F is the quotient J:=K[x,y]/I. We describe J by computing the cohomology of a certain complex whose top cohomology group is J.", "revisions": [ { "version": "v1", "updated": "2006-10-06T15:43:00.000Z" } ], "analyses": { "subjects": [ "14F40", "13D25" ], "keywords": [ "complete intersection", "jacobian ring", "cohomology group", "homogeneous polynomials" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....10228A" } } }