{ "id": "math/0610192", "version": "v1", "published": "2006-10-05T14:29:17.000Z", "updated": "2006-10-05T14:29:17.000Z", "title": "Central limit theorems for Gaussian polytopes", "authors": [ "I. Barany", "V. H. Vu" ], "comment": "to appear in Annals of Probability", "categories": [ "math.CO", "math.PR" ], "abstract": "Choose $n$ random, independent points in $\\R^d$ according to the standard normal distribution. Their convex hull $K_n$ is the {\\sl Gaussian random polytope}. We prove that the volume and the number of faces of $K_n$ satisfy the central limit theorem, settling a well known conjecture in the field.", "revisions": [ { "version": "v1", "updated": "2006-10-05T14:29:17.000Z" } ], "analyses": { "keywords": [ "central limit theorem", "gaussian polytopes", "standard normal distribution", "gaussian random polytope", "convex hull" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....10192B" } } }