{ "id": "math/0610096", "version": "v2", "published": "2006-10-03T02:04:03.000Z", "updated": "2008-08-14T18:23:10.000Z", "title": "Spectral multipliers for Schroedinger operators with Poeschl-Teller potential", "authors": [ "Shijun Zheng" ], "comment": "23 pages", "categories": [ "math.AP", "math.CA" ], "abstract": "We prove a sharp Mihlin-Hormander multiplier theorem for Schroedinger operators $H$ on $\\R^n$. The method, which allows us to deal with general potentials, improves Hebisch's method relying on heat kernel estimates for positive potentials. Our result applies to, in particular, the negative Poeschl-Teller potential $V(x)= -\\nu(\\nu+1) \\sech^2 x $, $\\nu\\in \\N$, for which $H$ has a resonance at zero.", "revisions": [ { "version": "v2", "updated": "2008-08-14T18:23:10.000Z" } ], "analyses": { "subjects": [ "42B25", "35J10" ], "keywords": [ "schroedinger operators", "spectral multipliers", "sharp mihlin-hormander multiplier theorem", "heat kernel estimates", "general potentials" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....10096Z" } } }