{ "id": "math/0610056", "version": "v1", "published": "2006-10-02T02:35:08.000Z", "updated": "2006-10-02T02:35:08.000Z", "title": "A note on recurrent random walks", "authors": [ "Dimitrios Cheliotis" ], "comment": "8 pages", "journal": "Statistics and Probability Letters 76 (2006) 1025-1031", "categories": [ "math.PR" ], "abstract": "For any recurrent random walk (S_n)_{n>0} on R, there are increasing sequences (g_n)_{n>0} converging to infinity for which (g_n S_n)_{n>0} has at least one finite accumulation point. For one class of random walks, we give a criterion on (g_n)_{n>0} and the distribution of S_1 determining the set of accumulation points for (g_n S_n)_{n>0}. This extends, with a simpler proof, a result of K.L. Chung and P. Erdos. Finally, for recurrent, symmetric random walks, we give a criterion characterizing the increasing sequences (g_n)_{n>0} of positive numbers for which liminf g_n|S_n|=0.", "revisions": [ { "version": "v1", "updated": "2006-10-02T02:35:08.000Z" } ], "analyses": { "subjects": [ "60F99" ], "keywords": [ "recurrent random walk", "increasing sequences", "symmetric random walks", "finite accumulation point", "simpler proof" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....10056C" } } }