{ "id": "math/0610010", "version": "v1", "published": "2006-09-30T05:07:50.000Z", "updated": "2006-09-30T05:07:50.000Z", "title": "Hamiltonian cycles in (2,3,c)-circulant digraphs", "authors": [ "Dave Witte Morris", "Joy Morris", "Kerri Webb" ], "comment": "11 pages, no figures", "categories": [ "math.CO" ], "abstract": "Let D be the circulant digraph with n vertices and connection set {2,3,c}. (Assume D is loopless and has outdegree 3.) Work of S.C.Locke and D.Witte implies that if n is a multiple of 6, c is either (n/2) + 2 or (n/2) + 3, and c is even, then D does not have a hamiltonian cycle. For all other cases, we construct a hamiltonian cycle in D.", "revisions": [ { "version": "v1", "updated": "2006-09-30T05:07:50.000Z" } ], "analyses": { "subjects": [ "05C45", "05C20", "05C25" ], "keywords": [ "hamiltonian cycle", "circulant digraph", "connection set", "witte implies" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....10010W" } } }