{ "id": "math/0610009", "version": "v4", "published": "2006-09-30T01:12:09.000Z", "updated": "2009-02-08T15:40:18.000Z", "title": "Cofibrations in Homotopy Theory", "authors": [ "Andrei Radulescu-Banu" ], "comment": "Ams-latex, 158 pages. Corrections to Thm. 6.4.1 and Def. 7.2.5", "categories": [ "math.AT", "math.KT" ], "abstract": "We define Anderson-Brown-Cisinski (ABC) cofibration categories, and construct homotopy colimits of diagrams of objects in ABC cofibration categories. Homotopy colimits for Quillen model categories are obtained as a particular case. We attach to each ABC cofibration category a left Heller derivator. A dual theory is developed for homotopy limits in ABC fibration categories and for right Heller derivators. These constructions provide a natural framework for 'doing homotopy theory' in ABC (co)fibration categories.", "revisions": [ { "version": "v4", "updated": "2009-02-08T15:40:18.000Z" } ], "analyses": { "subjects": [ "18G55", "55U35", "18G10", "18G30", "55U10" ], "keywords": [ "homotopy theory", "abc cofibration category", "construct homotopy colimits", "right heller derivators", "quillen model categories" ], "note": { "typesetting": "LaTeX", "pages": 158, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....10009R" } } }