{ "id": "math/0609807", "version": "v3", "published": "2006-09-28T14:44:49.000Z", "updated": "2006-12-19T10:39:08.000Z", "title": "Geometric and projective instability for the Gross-Pitaevski equation", "authors": [ "Laurent Thomann" ], "comment": "15 pages, 0 figures", "categories": [ "math.AP" ], "abstract": "Using variational methods, we construct approximate solutions for the Gross-Pitaevski equation which concentrate on circles in $\\R^3$. These solutions will help to show that the $L^2$ flow is unstable for the usual topology and for the projective distance.", "revisions": [ { "version": "v3", "updated": "2006-12-19T10:39:08.000Z" } ], "analyses": { "subjects": [ "35Q55", "35B35", "81Q05" ], "keywords": [ "gross-pitaevski equation", "projective instability", "construct approximate solutions", "variational methods", "usual topology" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......9807T" } } }