{ "id": "math/0609793", "version": "v1", "published": "2006-09-28T12:09:40.000Z", "updated": "2006-09-28T12:09:40.000Z", "title": "Coincidence site modules in 3-space", "authors": [ "Michael Baake", "Peter Pleasants", "Ulf Rehmann" ], "comment": "25 pages", "journal": "Discrete Comput. Geom. 38 (2007) 111-138", "doi": "10.1007/s00454-007-1327-6", "categories": [ "math.MG", "math.CO" ], "abstract": "The coincidence site lattice (CSL) problem and its generalization to Z-modules in Euclidean 3-space is revisited, and various results and conjectures are proved in a unified way, by using maximal orders in quaternion algebras of class number 1 over real algebraic number fields.", "revisions": [ { "version": "v1", "updated": "2006-09-28T12:09:40.000Z" } ], "analyses": { "subjects": [ "52C07", "52C23", "11H06", "11M41" ], "keywords": [ "coincidence site modules", "real algebraic number fields", "coincidence site lattice", "class number", "maximal orders" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......9793B" } } }