{ "id": "math/0609778", "version": "v1", "published": "2006-09-28T02:12:02.000Z", "updated": "2006-09-28T02:12:02.000Z", "title": "An elementary proof of Fediĭ's theorem and extensions", "authors": [ "David S. Tartakoff" ], "comment": "5pp", "categories": [ "math.AP" ], "abstract": "We present an elementary, $L^2,$ proof of Fedi\\u{\\i}'s theorem on arbitrary (e.g., infinite order) degeneracy and extensions. In particular, the proof allows and shows $C^\\infty,$ Gevrey, and real analytic hypoellipticity, and allows the coefficents to depend on the remaining variable as well.", "revisions": [ { "version": "v1", "updated": "2006-09-28T02:12:02.000Z" } ], "analyses": { "subjects": [ "35H10", "35N15" ], "keywords": [ "elementary proof", "fediĭs theorem", "extensions", "real analytic hypoellipticity", "infinite order" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......9778T" } } }