{ "id": "math/0609750", "version": "v1", "published": "2006-09-27T11:28:08.000Z", "updated": "2006-09-27T11:28:08.000Z", "title": "Asymptotic behavior for a viscous Hamilton-Jacobi equation with critical exponent", "authors": [ "Thierry Gallay", "Philippe Laurençot" ], "comment": "17 pages, no figure", "categories": [ "math.AP" ], "abstract": "The large time behavior of non-negative solutions to the viscous Hamilton-Jacobi equation $u_t - \\Delta u + |\\nabla u|^q = 0$ in the whole space $R^N$ is investigated for the critical exponent $q = (N+2)/(N+1)$. Convergence towards a rescaled self-similar solution of the linear heat equation is shown, the rescaling factor being $(\\log(t))^{-(N+1)}$. The proof relies on the construction of a one-dimensional invariant manifold for a suitable truncation of the equation written in self-similar variables.", "revisions": [ { "version": "v1", "updated": "2006-09-27T11:28:08.000Z" } ], "analyses": { "subjects": [ "35B33", "35B40", "35K55", "37L25" ], "keywords": [ "viscous hamilton-jacobi equation", "critical exponent", "asymptotic behavior", "large time behavior", "one-dimensional invariant manifold" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......9750G" } } }