{ "id": "math/0609655", "version": "v2", "published": "2006-09-25T19:55:06.000Z", "updated": "2007-02-17T09:59:43.000Z", "title": "Winning the pressing down game but not Banach Mazur", "authors": [ "Jakob Kellner", "Matti Pauna", "Saharon Shelah" ], "comment": "New version: some improvements in presentation, references, history; main theorem slightly strengthened; some typos removed", "journal": "J. Symbolic Logic 72 (2007), No. 4, 1323--1335", "doi": "10.2178/jsl/1203350789", "categories": [ "math.LO" ], "abstract": "Let $S$ be the set of those $\\alpha\\in\\omega_2$ that have cofinality $\\omega_1$. It is consistent relative to a measurable that the nonempty player wins the pressing down game of length $\\omega_1$, but not the Banach Mazur game of length $\\omega+1$ (both games starting with $S$).", "revisions": [ { "version": "v2", "updated": "2007-02-17T09:59:43.000Z" } ], "analyses": { "subjects": [ "03E35", "03E55" ], "keywords": [ "banach mazur game", "nonempty player wins", "consistent", "cofinality" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......9655K" } } }