{ "id": "math/0609615", "version": "v1", "published": "2006-09-21T19:05:55.000Z", "updated": "2006-09-21T19:05:55.000Z", "title": "Small gaps between products of two primes", "authors": [ "D. A. Goldston", "S. W. Graham", "J. Pintz", "C. Y. Yildirim" ], "comment": "11N25 (primary) 11N36 (secondary)", "doi": "10.1112/plms/pdn046", "categories": [ "math.NT" ], "abstract": "Let $q_n$ denote the $n^{th}$ number that is a product of exactly two distinct primes. We prove that $$\\liminf_{n\\to \\infty} (q_{n+1}-q_n) \\le 6.$$ This sharpens an earlier result of the authors (arXivMath NT/0506067), which had 26 in place of 6. More generally, we prove that if $\\nu$ is any positive integer, then $$ \\liminf_{n\\to \\infty} (q_{n+\\nu}-q_n) \\le C(\\nu) = \\nu e^{\\nu-\\gamma} (1+o(1)).$$ We also prove several other results on the representation of numbers with exactly two prime factors by linear forms.", "revisions": [ { "version": "v1", "updated": "2006-09-21T19:05:55.000Z" } ], "analyses": { "keywords": [ "small gaps", "linear forms", "distinct primes", "prime factors", "earlier result" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......9615G" } } }