{ "id": "math/0609426", "version": "v3", "published": "2006-09-14T23:44:11.000Z", "updated": "2006-10-15T09:14:47.000Z", "title": "Sum-product estimates in finite fields", "authors": [ "D. Hart", "A. Iosevich", "J. Solymosi" ], "categories": [ "math.CO", "math.CA" ], "abstract": "We prove, using combinatorics and Kloosterman sum technology that if $A \\subset {\\Bbb F}_q$, a finite field with $q$ elements, and $q^{{1/2}} \\lesssim |A| \\lesssim q^{{7/10}}$, then $\\max \\{|A+A|, |A \\cdot A|\\} \\gtrsim \\frac{{|A|}^{{3/2}}}{q^{{1/4}}$.", "revisions": [ { "version": "v3", "updated": "2006-10-15T09:14:47.000Z" } ], "analyses": { "keywords": [ "finite field", "sum-product estimates", "kloosterman sum technology" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......9426H" } } }