{ "id": "math/0609322", "version": "v2", "published": "2006-09-12T02:19:33.000Z", "updated": "2007-04-20T21:16:57.000Z", "title": "Approximating reals by sums of two rationals", "authors": [ "Tsz Ho Chan" ], "comment": "13 pages, improved results and some changes in the proofs", "categories": [ "math.NT" ], "abstract": "We generalize Dirichlet's diophantine approximation theorem to approximating any real number $\\alpha$ by a sum of two rational numbers $\\frac{a_1}{q_1} + \\frac{a_2}{q_2}$ with denominators $1 \\leq q_1, q_2 \\leq N$. This turns out to be related to the congruence equation problem $x y \\equiv c \\pmod q$ with $1 \\leq x, y \\leq q^{1/2 + \\epsilon}$.", "revisions": [ { "version": "v2", "updated": "2007-04-20T21:16:57.000Z" } ], "analyses": { "subjects": [ "11J04", "11A07", "11L40", "11L07" ], "keywords": [ "approximating reals", "generalize dirichlets diophantine approximation theorem", "congruence equation problem", "real number", "rational numbers" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......9322C" } } }