{ "id": "math/0609302", "version": "v1", "published": "2006-09-11T17:00:14.000Z", "updated": "2006-09-11T17:00:14.000Z", "title": "On the Yamabe equation with rough potentials", "authors": [ "Francesca Prinari", "Nicola Visciglia" ], "categories": [ "math.AP" ], "abstract": "We study the existence of non--trivial solutions to the Yamabe equation: $$-\\Delta u+ a(x)= \\mu u|u|^\\frac4{n-2} \\hbox{} \\mu >0, x\\in \\Omega \\subset {\\mathbf R}^n \\hbox{with} n\\geq 4,$$ $$ u(x)=0 \\hbox{on} \\partial \\Omega$$ under weak regularity assumptions on the potential $a(x)$. More precisely in dimension $n\\geq 5$ we assume that: \\begin{enumerate} \\item $a(x)$ belongs to the Lorentz space $L^{\\frac n2, d}(\\Omega)$ for some $1\\leq d <\\infty$, \\item $a(x) \\leq M<\\infty \\hbox{a.e.} x\\in \\Omega$, \\item the set $\\{x\\in \\Omega|a(x)<0\\}$ has positive measure, \\item there exists $c>0$ such that $$\\int_\\Omega (|\\nabla u|^2 + a(x) |u|^2) \\hbox{} dx \\geq c\\int_\\Omega |\\nabla u|^2 \\hbox{} dx \\hbox{} \\forall u\\in H^1_0(\\Omega).$$ \\end{enumerate} \\noindent In dimension $n=4$ the hypothesis $(2)$ above is replaced by $$a(x)\\leq 0 \\hbox{} a.e. \\hbox{} x\\in \\Omega.$$", "revisions": [ { "version": "v1", "updated": "2006-09-11T17:00:14.000Z" } ], "analyses": { "keywords": [ "yamabe equation", "rough potentials", "weak regularity assumptions", "non-trivial solutions", "lorentz space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......9302P" } } }