{ "id": "math/0609144", "version": "v4", "published": "2006-09-05T14:49:52.000Z", "updated": "2007-11-26T04:48:52.000Z", "title": "Sato--Tate, cyclicity, and divisibility statistics on average for elliptic curves of small height", "authors": [ "William D. Banks", "Igor E. Shparlinski" ], "categories": [ "math.NT" ], "abstract": "We obtain asymptotic formulae for the number of primes $p\\le x$ for which the reduction modulo $p$ of the elliptic curve $$ \\E_{a,b} : Y^2 = X^3 + aX + b $$ satisfies certain ``natural'' properties, on average over integers $a$ and $b$ with $|a|\\le A$ and $|b| \\le B$, where $A$ and $B$ are small relative to $x$. Specifically, we investigate behavior with respect to the Sato--Tate conjecture, cyclicity, and divisibility of the number of points by a fixed integer $m$.", "revisions": [ { "version": "v4", "updated": "2007-11-26T04:48:52.000Z" } ], "analyses": { "subjects": [ "11G05", "11L40", "14H52" ], "keywords": [ "elliptic curve", "divisibility statistics", "small height", "sato-tate conjecture", "asymptotic formulae" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......9144B" } } }